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Abstract

Perturbation methods are used to study steady, fully developed flow of Oldroyd-B fluids through a curved pipe of circular cross-sec-
tion. A perturbation solution up to secondary order is obtained for a small value of curvature ratio. The range of validity of the per-
turbation method are discussed and chosen carefully. Variations of temperature distribution with Re and We are discussed in detail
in order to investigate the combined effects of the two parameters on temperature distribution. Present studies also show the variations
of the heat transfer rate with Re and We. This study explores many new characteristics of convective heat transfer of a kind of visco-
elastic fluid through curved pipes.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, perturbation solutions for heat transfer of
viscoelastic fluids in curved pipes are obtained. It is
assumed that the fluid flow is steady, hydrodynamically
and thermally fully developed, both the wall heat flux
and the peripheral wall temperature of one cross-section
are uniform (different wall temperature in different cross-
section), and, the viscous dissipation is negligible.

Since the initial work by Dean [1,2], more and more
attentions have been paid to the mass and heat transfer
of Newtonian fluid through curved pipes, not only because
of its practical importance in various industrial applica-
tions, but also because of physically interesting phenomena
caused by the curvature of the pipe. The previous works on
heat transfer concerned on the planar curved pipes with a
circle cross-section, such as Akiyama and Cheng [3], Patan-
ker et al. [4] and Yang and Chang [5]. Such works indicated
that both the efficiencies of convective heat transfer and
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Nusselt number in curved pipes are much greater than
those in straight pipes. Then Garimella and Chdrards [6]
investigated the forced convective heat transfer in coiled
annular ducts experimentally.

By using numerical method, Yang and Ebadian [7,8]
and Choi and Park [9] studied the heat transfer and mixed
convection flow in a curved annular-sector duct, respec-
tively. More recently, Chen and Zhang [10,11] extended
the former work to the heat transfer in a rotating helical
pipe.

Besides Newtonian fluid, Viscoelastic fluids are also
widely used in industries. Lots of industrial materials fall
into this category, such as solutions and melts of polymers,
soap and cellulose solutions, biological solutions, various
colloids and also paints, tars, asphalts and glues. The Old-
royd-B model can be found frequently in the field of blow-
ing and extrusion molding as well. However, it’s rather
surprising to find that, despite its important applications,
the flow and heat transfer of viscoelastic fluids in pipes
has received much less attention in the monographs than
its Newtonian counterpart. Robertson and Muller [12]
and Jitchote and Robertson [13] presented the perturbation
solutions of flow of Oldroyd-B fluid and second order fluid,
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Nomenclature

a radius of the circle cross-section
D symmetric part of the velocity gradient
er, e/, es unit base vectors of the convected coordinates

system
e1, e2, e3 unit base vectors of the Cartesian coordinate

system
G axial gradient of w,G = ow/os

H axial gradient of T,H = oT/os

p pressure
Pr Prandtl number, Pr = g/a
Pe Peclet number, Pe = RePr

R curvature radius
Re Reynolds number, Re = qaW0/g
r radial direction coordinates
s axial direction coordinates
T, Tw temperature of fluid and wall
Tb bulk temperature, T b ¼

R 1
0

R 2p
0 Twr d/dr=R 1

0

R 2p
0 wr d/dr

T0 characteristic temperature, T0 = aPrH

u vector of velocity

u, v, w physical velocity components
W0 characteristic temperature, W0 = Ga2/4g
We Weissenberg number, kW0/a

Greek symbols

a thermal diffusivity
gs, gp solvent viscosity and polymeric contribution to

the viscosity
g sum of gs and gp

j curvature ratio
k relax time
q density of the fluid
s extra stress tensor
/ angular coordinate
w stream function

Subscripts and superscripts

* dimensional variable
max maximum value
$ upper-convected derivative
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respectively. Almost at the same time, Fan et al. [14] inves-
tigated the comparison between fully developed viscous
and viscoelastic flows in curved pipes by using finite ele-
ment method. In their work, they investigated not only
the flow characteristics but the two normal stress differ-
ences as well. In the field of heat transfer of viscoelastic flu-
ids, Cho and Harnett [15] analyzed heat transfer of
polyacrylamide in Chicago tap water. Then Toh and Gha-
jar [16] reported thermal entrance region Nusselt values for
turbulent flow of two different polyacrylamides in circular
tubes experimentally. Recently, Pinho and Oliveira [17]
got the analytic solution for forced convection of Phan-
Thien–Tanner fluid in straight pipes.

In present work, we have extended the previous analysis
of Robertson and Muller to the convective heat transfer
problem of fully-developed flow of an Oldroyd-B fluid in
a curved pipe. It’s quite necessary and useful to investigate
this problem. Besides the industrial applications, perturba-
tion solutions of present work can provide valuable tests
for the numerical simulation of heat transfer of viscoelastic
fluids. Moreover, it is much easier to analyze perturbation
solutions than numerical ones. In this paper, the combined
effects of viscosity, centrifugal force and elasticity on heat
transfer are examined in detail. Many new and interesting
conclusions are drawn.
2. Governing equations

The momentum and constitutive equations of present
work are from reference to the work of Robertson and
Muller. We consider the incompressible Oldroyd-B fluids,
for which the extra stress tensor s* can be written as
s� ¼ ss� þ sp�; ð1Þ

where ss* and sp* are defined as

ss� ¼ 2gsD
�; sp� þ k sp�

r
¼ 2gpD�: ð2Þ

In Eq. (2), gs, gp and k are referred to as the solvent viscos-
ity, polymeric contribution to the viscosity and polymer
relaxation time, respectively. The rate of deformation ten-
sor, D*, is the symmetric part of the velocity gradient.
The components of D* relative to a rectangular coordinate
system are

D�ij ¼
1

2

ov�i
ox�j
þ

ov�j
ox�i

 !
: ð3Þ

The ‘‘$” notation introduced in (2) denotes the upper-con-
vected derivative, which for an arbitrary second-order ten-
sor S* with coordinates S�ij relative to a rectangular
coordinate system, is

S�ij
r
¼

oS�ij
ot�
þ v�k

oS�ij
ox�k
� ov�i

ox�k
S�kj � S�ik

ov�j
ox�k

: ð4Þ

In the limit of k equal to zero, the Oldroyd-B equation re-
duces to the Newtonian constitutive equation and for van-
ishing gs to the upper-convected Maxwell constitutive
equation.

Fig. 1 shows the curved pipe and the convected coordi-
nates system (r*,/, s*) used in present work. R is the radius
of curvature of the pipe and a the radius of the circle cross-
section. er, e/, es are the unit base vectors of the convected
coordinates system (r*,/, s*) defined relative to the unit
base vectors of the Cartesian coordinate system e1, e2, e3 as



e e

e

e

ee

y

x

a2

R

z
1

23

Fig. 1. The curved pipe and the coordinate system.
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er ¼ cos / cos
~s
R

e1 þ sin
~s
R

e2

� �
þ sin /e3;

e/ ¼ � sin / cos
~s
R

e1 þ sin
~s
R

e2

� �
þ cos /e3

es ¼ sin
~s
R

e1 � cos
~s
R

e2:

ð5Þ

The non-dimensional quantities are introduced as follow-
ing:

s ¼ s�

a
; r ¼ r�

a
;

ðu; v;wÞ ¼ ðu
� � er; u

� � e/; u
� � esÞ

W o

; p ¼ ap�

gW o

;

ss ¼ a
gW o

ss�; sp ¼ a
gW o

sp�; T ¼ T w � T �

T o

ð6Þ

where u* is the velocity vector of the flow, g the sum of gp

and gs, Tw the temperature on the wall of one cross-section
of the pipe, Wo and To the characteristic velocity and the
characteristic temperature of the flow, respectively. By def-
inition of a hydrodynamically and thermally fully devel-
oped flow in curved pipes, the pumping power of flow
op*/os* and the heat flux oT*/os* are constants denoted
as �G and H. So the characteristic velocity and the charac-
teristic temperature are defined as follows:

W o ¼
a2

4g
� op�

os�

� �
¼ Ga2

4g
;

T o ¼ RePra
oT �

os�
¼ RePraH ; ð7Þ

where Pr called Prandtl number, is the ratio of g/q and the
thermal diffusivity a.

The rest non-dimensional parameters used in present
work are including, the curvature ratio, j, the Reynolds
number, Re, the Weissenberg number, We, the Peclet num-
ber, Pe, and the ratio of the polymeric to total shear
viscosity,

j ¼ a
R
; Re ¼ qW oa

g
; We ¼ kW o

a
;

Pe ¼ RePr;
gp

g
ð8Þ
where q is the constant density of the fluid.
Generally speaking, for the problems of incompressible

fully developed flow, a non-dimensional stream function
w can be introduced to avoid the troubles from pressure.
With respect to w, velocities u and v can be written as

u ¼ � 1

rM
ow
o/

; v ¼ 1

M
ow
or
; ð9Þ

where

M ¼ 1þ jx: ð10Þ

By using the tensor analysis from many references to the
Bolinder’s work [18], the continuity, momentum and en-
ergy equations for the convected coordinates system with
respect to w are as follows:

ou
or
þ 1

r
ov
o/
þ 1

r
þ j cos /

M

� �
u� j sin /

M
v ¼ 0; ð11Þ

Re
1

rM
ow
or

ow
o/
� ow

o/
ow
or

� �
� j

w

M2

ow
or

sin/þ 1

r
ow
o/

cos/

� �� �

¼ 4

M
þ osrs

or
þ 1

r
os/s

o/
þ srs

r
þ 2j

M
ðsrs cos/� s/s sin/Þ;

ð12Þ

Re

"
�2

jw
M

r
ow
or

sin /þ ow
o/

cos /

� �

þ 1

M2
� ow

or
o

3w
or2o/

þ ow
o/

o
3w

or3
þ 1

r
o

2w
or2

ow
o/
� o

2w
oro/

ow
or

� ��

þ 1

r2

o3w

oro/2

ow
o/
� o3w

o/3

ow
or
� ow

o/
ow
or

� �
� 2

r3

o2w

o/2

ow
o/

�

þ j

M3
sin / �2r

o
2w

or2

ow
or
þ 3

ow
or

� �2

þ 1

r
ow
o/

o
2w

oro/

  

� 3

r
ow
or

o2w

o/2
� 1

r2

ow
o/

� �2
!
þ cos /

 
o2w
oro/

ow
or
� 3

o2w
or2

ow
o/

� 3

r
ow
or

ow
o/
� 1

r2

ow
o/

o
2w

o/2

!!

þ 3j2

M4
cos2 /

ow
or

ow
o/
� sin2 /

2

1

r
ow
o/

� �2

� r
ow
or

� �2
 ! !#

¼ o
2srr

oro/
� 3

osr/

or
� r

o
2sr/

or2
� o

2s//

oro/

þ 1

r
o

2sr/

o/2
þ osrr

o/
� os//

o/o/

� �

� j
M

sin /
osr/

o/
þ srr þ r

osss

or
� r

os//

or
� s//

� ��

þ cos / 2sr/ þ r
osr/

or
osss

o/
� osrr

o/

� ��

þ j2r

M2
sr/ cos 2/� 1

2
s// � srr

� �
sin 2/

� �
; ð13Þ
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� 1

rM
ow
o/

oT
or
þ 1

rM
ow
or

oT
o/
� w

PrM

¼ 1

PrRe
o

2T
or2
þ 1

r2

o
2T

o/2
þ 1

r
þ j cos/

M

� �
oT
or
� j sin/

M
1

r
oT
o/

� �
:

ð14Þ

The equations of the extra stress tensor are in the Appendix
A.

The velocity is prescribed to be zero on the wall of the
pipes. Using Eq. (9), the boundary conditions of the
momentum equations are written as

w ¼ 0; w ¼ u ¼ v ¼ 0; ow=or ¼ 0;

ow=o/ ¼ 0; at r ¼ 1: ð15Þ

For the non-dimensional temperature in Eq. (6), the
boundary condition of energy equation is introduced as
follow:

T ¼ 0; at r ¼ 1: ð16Þ
3. Perturbation solution

A perturbation method is used to study heat transfer in
curved pipes with circle cross-section. The perturbation
parameter of present work is the curvature ratio, j. In
the limit of j equal to zero, the heat transfer in a straight
pipe is approached.

We look for the perturbation solutions for Eqs. (11)–
(14) of the form

w ¼
X1
n¼0

jnwðnÞ; w ¼ j
X1
n¼0

jnwðnþ1Þ; T ¼
X1
n¼0

jnT ðnÞ

s ¼
X1
n¼0

jnsðnÞ; sp ¼
X1
n¼0

jnspðnÞ; ss ¼
X1
n¼0

jnssðnÞ:

ð17Þ

The boundary conditions with respect to w(n), w(n) and T(n)

are as follows:

wðnÞ ¼ wðnþ1Þ ¼ T ðnÞ ¼ owðnþ1Þ=or ¼ owðnþ1Þ=o/ ¼ 0: ð18Þ

From the work of Robertson and Muller, we obtain the
perturbation solutions of w and w. After substituting the
perturbation solutions of w and w in Eq. (14) and collecting
terms of j0, we obtain the equation respect to T(0) as

r2T ð0Þ ¼ �ð1� r2Þ; ð19Þ

where $2T(0) is given by,

r2T ð0Þ ¼ o2T ð0Þ

or2
þ 1

r
oT ð0Þ

or
þ 1

r
o2T ð0Þ

o/2
: ð20Þ

The solution of Eq. (19) which satisfies boundary condition
(18) is

T ð0Þ ¼ 1

16
ðr4 � 4r2 þ 3Þ; ð21Þ
which denotes the temperature distribution in straight
pipes.

Then substituting Eq. (21) to (14), associated with per-
turbation solutions of w and w, and collecting terms of
order j1, the following equation for T(1) can be obtained,

r2T ð1Þ ¼ cos/

"
9

4
r� 2r3

� �
þRe2 � 19

11520
rþ 1

288
r3

�

� 1

384
r5þ 1

1152
r7� 1

11520
r9

�

þWe
gp

g
Re � 11

288
rþ 1

12
r3� 1

18
r5þ 1

96
r7

� �

þ We
gp

g

� �2

�1

6
rþ 1

3
r3� 1

6
r5

� �#

þ Pr cos/Re Re � 1

144
rþ 11

576
r3� 7

384
r5þ 1

144
r7

��

� 1

1152
r9

�
þWe

gp

g
� 1

24
rþ 5

48
r3� 1

12
r5þ 1

48
r7

� ��
:

ð22Þ

The solution of Eq. (22) which satisfies boundary condition
(18) is of the form T(1) = g1(r)cos/ with

g1 rð Þ¼ �19

96
rþ 9

32
r3� 1

12
r5

� �
þRe2 73

691200
r� 19

92160
r3

�

þ 1

6912
r5� 1

18432
r7þ 1

92160
r9� 1

1382400
r11

�

þWe
gp

g
Re

161

69120
r� 11

2304
r3þ 1

288
r5� 1

864
r7

�

þ 1

7680
r9

�
þ We

gp

g

� �2 1

96
r� 1

48
r3þ 1

72
r5� 1

288
r7

� �

þPr Re2 103

276480
r� 1

1152
r3þ 11

13824
r5� 7

18432
r7

��

þ 1

11520
r9� 1

138240
r11

�

þWe
gp

g
Re

3

1280
r� 1

192
r3þ 5

1152
r5� 1

576
r7þ 1

3840
r9

� ��
:

ð23Þ

The higher-order terms in the series solution can be
obtained using procedures similar to those used to calculate
T(0) and T(1). As for the curved pipe solution for Newtonian
fluid, T(2) can be written as T(2) = g2(r) + cos(2/)g3(r). The
solution for T(2) is in Appendix B.

4. Results and discussion

Combined effects of viscosity, centrifugal force and elas-
ticity on the flow of viscoelastic fluids make the heat trans-
fer in curved pipes very complicated. Our work focuses on
the convective heat transfer in curved pipes and the results
in the paper will almost be confined to the case of
Pr = 0.85.
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4.1. Temperature distribution

Fig. 2 presents the distributions of different order solu-
tions of temperature for different Re. In this and other fig-
ures, the left half of the cross-section is the inner bend of
'T = (0.0055, -0.0055)           (0.0016, -

  (0.0003, -0.0001)             (0.0000,

                           

  Re=5                     Re =

Fig. 2. Temperature distribution of jT(1) and j2T ð2ÞðWe ¼ 5; j ¼ 0:1;
gp

g ¼

'T = (0.0016, -0.0016)           (0.0009, -0

  
(0.0000, -0.0008)            (0.0000, -

We=0                    We=

Fig. 3. Temperature distribution of jT(1) and j2T(2) (Re = 22, j = 0.1, gp/
the cross-section while the outer is on the right. Solid and
dotted lines indicate positive and negative values, respec-
tively. For the small Re, jT(1) has a positive value in the
semicircle near the inner bend of the pipe and a negative
value near the outer wall. When Re = 20.5, a negative value
0.0016)              (0.0044, -0.0044) 

 -0.0030)            (0.0000, -0.0050) 

            

 20.5                   Re=25

0:2; Pr ¼ 0:85; T 0 ¼(maximum, minimum); (a) jT(1) and (b) j2T(2)).

.0009)              (0.0024, -0.0024) 

0.0011)             (0.0000, -0.0035) 

2                    We=5

g = 0.2, Pr = 0.85, T
0
= (maximum, minimum); (a) jT(1), (b) j2T(2)).
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Fig. 4. Contours of temperature for Re = 25, We = 5, j = 0.1, gp/g = 0.2 and Pr = 0.85. (a) T = T(0) + jT(1) + j2T(2); (b) T(0).
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region appears in the outer half while a positive value
region appears near the inner wall. The maximum of
jT(1) becomes smaller. As the Re increases to 25, the distri-
bution of jT(1) behaves almost in the same structure as that
in the case of Re = 5, but a reverse way.

The distribution of j2T(2) are as seen in Fig. 2b. For
Re = 5, a negative value region appears in the center of
the pipe while near the outer and inner wall a positive value
region appears. When Re = 20.5 and Re = 25, the negative
value region fills the whole cross-section. As Re increases,
the absolute value of the minimum of j2T(2) becomes lar-
ger, while the maximum of jT(1) becomes smaller, so the
second order effects be lager than the first order effects.

Fig. 3 shows the distributions of different order solu-
tions of temperature for different We. As seen in Fig. 3,
-0.04

-0.02

0

0.02

0.04

We

xmax

Re =5

Re =25
Re =15

0 1 2 3 4 5

Fig. 5. Location of maximum in temperature as a function of We for
j = 0.1, gp/g = 0.2 and Pr = 0.85.
the varieties of distributions of the jT(1) and j2T(2) for dif-
ferent We are almost the same as that for different Re. It
means that the effects on the temperature distribution of
the We are analogous to those of the Re.

Fig. 4 is a representative one of the contours of temper-
ature in curved pipes and the contours of T(0) at the right.
Fig. 5 shows the location of maximum in temperature as a
function of We. It is useful to investigate the effect of elas-
ticity on the shift. We see in Fig. 5 that similar to the shift
of the maximum in axial velocity, for relatively small values
of Re, the maximum in temperature is shifted toward the
inner bend of the pipe (a negative xmax). As either We or
Re increases, the inward shift decreases and becomes an
outward shift. Fig. 4 is a typical example of the outward
shift for a Reynolds number of 25.0, Weissenberg number
0.182

0.184

0.186

0.188

Tmax

We

Re =5

=25Re
=15Re

0 1 2 3 4 5

Fig. 6. Variations of Tmax with We for different values of Re for j = 0.1,
gp/g = 0.2 and Pr = 0.85.



Table 1
Relative magnitude of terms for different Prandtl numbers

Pe Wegp/g MaxðjT ð1Þ=T ð0ÞjÞ MaxðjT ð2Þ=T ð0ÞjÞ
0.0 1.0 0.5286 2.1803

25.0 1.0 0.3979 2.8631
37.5 1.0 0.7155 3.7987
75.0 1.0 1.7088 8.9827
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of 5.0, viscosity ratio of 0.2, curvature ratio of 0.1 and Pra-
ndtl number of 0.85. The non-linear interaction of inertia
and elasticity results in a greater outward shift than that
expected due to adding the independent effects of inertia
and elasticity.

Fig. 6 shows the effects of We and Re on Tmax, which
indicates that Tmax decreases with We or Re increasing. It
is because that counter value regions of jT(1) appear when
We or Re is large enough as shown in Fig. 2a and Fig. 3a,
which decreases the value of jT(1). Meanwhile, the absolute
value of the minimum of negative j2T(2) becomes larger as
shown in Fig. 2b and Fig. 3b. The combined effect of jT(1)

and j2T(2) decreases Tmax with We or Re increasing.
4.2. Nusselt number

From reference to the work of Chen and Zhang [10], the
non-dimensional peripheral Nusselt number is defined as

Nu ¼ 2

�T b

oT
or

� �
r¼1

; ð24Þ

where Tb is the bulk temperature, T b ¼
R 1

0

R 2p
0

Twr d/dr=R 1

0

R 2p
0

wr d/dr. The expression of average Nusselt number
is defined as the integral of Eq. (24) along the peripheral
of pipe,

Nu ¼ 1

2p

Z 2p

0

2

�T b

oT
or

� �
r¼1

d/: ð25Þ

Nu0 ¼ 4:3636 is the value of average Nusselt number is
straight pipes, which is independent of any parameters. A
measure of the increase in average Nusselt number in a
curved pipe relative to that in a straight pipe is defined as
0
0.001

0.003

0.005

0.007

0.009

Nur

We

Re =5

=25Re
=15Re

1 2 3 4 5

Fig. 7. Variations of Nur with We for different values of Re for j = 0.1,
gp/g = 0.2 and Pr = 0.85.
Nur ¼ ðNu� Nu0Þ=Nu0 ð26Þ
Fig. 7 is the plot of Nur against Weissenberg number. For
the case of small Reynolds number, Nur is almost a con-
stant with respect to variations of Weissenberg number.
For Re = 15, the Nur increases as We increases, while to
Re = 25, the magnitude of the increase becomes dramatic
greater. As the Nusselt number indicates the heat transfer
rate of the flow, Fig. 7 shows that the heat transfer rate in-
creases as We increases and the bigger the Re is the greater
the magnitude of the increase is. The combined effects of
the two parameters result in a greater heat transfer rate
than the adding of the two independent effects.

4.3. Range of validity of the perturbation method

There is an implicit assumption in perturbation method
that the truncated terms in the perturbation expansion are
not significant relative to the terms which are kept. If the
coefficients of the expansion, T(0), T(1), T(2), etc., are of
order one, then for small perturbation j the contribution
of higher order terms will be negligible. Since the Re and
Wegp/g of the perturbation solutions of w and w which
are obtained from the work of Robertson and Muller are
limited to less than 25 and 1, respectively, the perturbation
solutions of T must be under the limit. In order to estimate
the range of parameters such as Re, We and gp/g, the rela-
tive size of the terms in the truncated series is considered.

Since the Robertson and Muller have found that the
Re < 25 and Wegp/g < 1, the only parameter to be dis-
cussed here is the Peclet number (Pe = RePr). Table 1 dis-
plays the relative magnitude of terms in the series solution
for different Peclet numbers. Examination of Table 1
reveals that the maximum value of |T(2)/T(0)| becomes sig-
nificantly larger than order one as the Pe is increasing
beyond 37.5. So the Pe of present work’s perturbation
results is better to less than value of 37.5.

5. Conclusions

The convective heat transfer of Oldroyd-B fluid in
curved pipes with circle cross-section is investigated by a
perturbation method. The combined effects of viscosity,
centrifugal force and elasticity on heat transfer are exam-
ine. The major conclusions are drawn as follow:

The zero order perturbation solution of the heat transfer
of Oldroyd-B fluid in a curved pipe doesn’t depend on any
parameters. For the first order and second order cases,
both the Re and We affect them. The effects on first order
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and second order results of We are analogous to those of
Re. The analysis of the location and value of maximum
in temperature indicates that Re and We affect both of
them. The non-linear interaction of inertia and elasticity
results in a greater outward shift than that expected due
to adding the independent effects of inertia and elasticity.
It means that the all of the perturbation solutions deter-
mine the value of maximum in temperature, while the first
and second order ones affect the location of the maximum
as well.

The study of the Nusselt number indicates that the heat
transfer rate increases as the Re and We increases. The
combined effects of the two parameters on heat transfer
rate are greater than the adding of the two independent
ones.

The range of validity of the perturbation method used in
present work is examined carefully. To use present work’s
perturbation result, the values of Wegp/g and Pe are
restricted in less than 1 and 37.5, respectively.
Appendix A. Components of the stress tensor in convected

coordinates

For fully developed flow, the non-dimensional compo-
nents of ss of convected coordinates are:

ss
rr ¼ 2

gs

g
ou
or
; ss

r/ ¼
gs

g
ov
or
þ 1

r
ou
o/
� v

� �� �
;

ss
rs ¼

gs

g
ow
or
� j

M
w cos /

� �
;

ss
// ¼ 2

gs

g
1

r
uþ ov

o/

� �
; ss

/s ¼
gs

g
1

r
ow
o/
þ j

M
w sin /

� �
;

ss
ss ¼ 2

gs

g
j
M
ðu cos /� v sin /Þ:

ðA:1Þ

The non-dimensional components of sp are:

sp
rr þ We u

osp
rr

or
þ v

r
osp

rr

o/
� 2sp

rr

ou
or
� 2

r
sp

r/

ou
o/

� �

¼ 2
gp

g
ou
or
; ðA:2Þ
g2ðrÞ ¼
1

64
þ 7

96
r2 � 17

128
r4 þ 17

384
r6

� �

þ Re2 � 581

4423680
þ 371

2764800
r2 þ 1

20480
r4 � 1

12288
r6 þ

�

þ Re4 � 4741147

42138206208000
þ 1373

4954521600
r2 � 19

53084160

�

� 157

4777574400
r12 þ 11

1734082560
r14 � 1

1486356480
r16 þ

3

þ We
gp

g
Re

889

552960
� 389

69120
r2 þ 37

4608
r4 � 79

13824
r6 þ

��
sp
r/ þ We u

osp
r/

or
þ v

r

osp
r/

o/
þ sp

rr

� ��

�sp
r/

ou
or
�

sp
//

r
ou
o/
� sp

rr

ov
or
�

sp
r/

r
uþ ov

o/

� ��

¼
gp

g
ov
or
þ 1

r
ou
o/
� v

� �� �
; ðA:3Þ

sp
rs þ We u

osp
rs

or
þ v

r
osp

rs

o/
� sp

rs

ou
or
�

sp
/s

r
ou
o/
� sp

rr

ow
or
�

sp
r/

r
ow
o/

�

þ j
M

sp
rsð�u cos /þ v sin /Þ þ wsp

rr cos /� wsp
r/ sin /

� 	�

¼
gp

g
ow
or
� j

M
w cos /

� �
; ðA:4Þ

sp
//þWe u

osp
//

or
þ v

r
osp

rr

o/
þ2sp

r/

� �
�2sp

r/

ov
or
�2

r
sp

// uþ ov
o/

� �� �

¼ 2

r

gp

g
uþ ov

o/

� �
; ðA:5Þ

sp
/s þ We u

osp
/s

or
þ v

r
osp

rs

o/
þ sp

rs

� �
� sp

rs

ov
or
�

sp
/s

r
uþ ov

o/

� ��

� sp
r/

ow
or
�

sp
//

r
ow
o/
þ j

M

�
sp

/sð�u cos /þ v sin /Þ

þwsp
r/ cos /� wsp

// sin /

��

¼
gp

g
1

r
ow
o/
þ j

M
w sin /

� �
; ðA:6Þ

sp
ss þ We u

osp
ss

or
þ v

r
osp

ss

o/
� 2sp

rs

ow
or
� 2

r
sp

/s

ow
o/

�

þ 2
j
M
ðsp

ssð�u cos /þ v sin /Þ þ wsp
rs cos /� wsp

/s sin /Þ
�

¼ 2
gp

g
j
M
ðu cos /� v sin /Þ: ðA:7Þ
Appendix B. Perturbation solution of T(2)

The second term in the series solution for the tempera-
ture takes the form T(2) = g2(r) + cos(2/)g3(r), where:
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